In vitro predictive models of particle-induced granulomas

03:112 years ago

Léa Hiéronimus is a PhD student at the Louvain centre for Toxicology and Applied Pharmacology (LTAP, UCLouvain, Belgium). Léa is working in François Huaux's team, where we are trying to better understand how certain inhaled particles exert their toxicity. The goal is to better diagnose and treat individuals exposed to particles, but also to identify the particle characteristics which induce, or do not induce, toxic effects. For this, Léa studies a very particular cell type which seems to be involved in particle responses. Indeed, we have found the specific accumulation of the innate subset of B-lymphocytes called “B-1 lymphocytes”, which occurred during granuloma formation/maturation induced by inhaled particles in mice. According to the literature, this accumulation can be attributed to their migration from mesothelial cavities such as the peritoneum, acting as a reservoir.
In addition to conventional particles-induced granulomas, which formation rely on macrophages responses, we developed new models relying on B-1 lymphocytes. Indeed, B-1 lymphocytes show a unique clustering property, that is not observed using macrophages or other subsets of B-lymphocytes (conventional B-2 lymphocytes) as purified B-1 lymphocytes regroup granuloma-inducing particles (carbon nanotubes CNT7, crocidolite asbestos, micrometric silica MinUSil and MSS, cobalt oxide,…) but not carbon black, a particle not-inducing granuloma in vivo. Additionally, we developed a model aiming to recapitulate the lung after B-1 lymphocytes migration and found that macrophages and epithelial cells (MHS and LA4 cell lines) where grouped to form spheroids when in coculture with B-1 and not B-2 lymphocytes.
These models will serve as tools to identify new mediators of granuloma formation, which could serve as biomarkers and/or therapeutic targets for exposed individuals. On the other hand, we aim to propose new bioassays for the prediction of granuloma-inducing materials using alternative models.

Lab website: https://uclouvain.be/en/research-institutes/irec/ltap
Contact: lea.hieronimus@uclouvain.be

Related

Cells4Thought: using iPSCs for neurodevelopmental health
Projects and initiatives
HealthToxicologyInnovationIn vitro

Cells4Thought: using iPSCs for neurodevelopmental health

The prevalence of neurodevelopmental disorders (NDDs), including cognitive impairments, is increasing worldwide with great impact on daily life quality. There is evidence that exposure to chemicals may contribute to the incidence of NDD. However, a causal link is lacking. Towards this goal, a human-relevant in vitro model system mimicking parts of brain development, such as neuronal network functioning, could be used for mechanistic research on how gene-environment interactions contribute to the development of NDD. This is going to be studied in the project Cells4Thought, using induced pluripotent stem cells form different individuals to study the effect of chemicals on neuronal differentiation.
02:3828 days ago
We all want a safer world for humanity, animals and the environment: Transition Animal-free Innovation
Projects and initiatives
HealthInnovationPolicy

We all want a safer world for humanity, animals and the environment: Transition Animal-free Innovation

Why is the transition to animal-free research so important? What are animal-free models? How does TPI (Transition Animal-Free Innovation) encourage their development and use? And who are we working with to make this happen? We explain this in our animation. More and more animal-free tests and research methods are becoming available, but not all research questions or safety tests can be answered in this way yet. In addition, the validation, qualification and acceptance of non-animal innovations still lags behind. Therefore, the Dutch Ministry of Agriculture, Nature and Food Quality (LNV) stimulates the development and application of animal-free innovations. This is done with the partner programme Transition Animal-free Innovation (TPI).
02:482 months ago
New approaches for cancer hazard assessment
Innovation examples

New approaches for cancer hazard assessment

Chemical substances are subjected to assessment of genotoxic and carcinogenic effects before being marketed to protect man and the environment from health risks. For cancer hazard assessment, the long-term rodent carcinogenicity study is the current mainstay for the detection of nongenotoxic carcinogens. However, carcinogenicity studies are shown to have prominent weaknesses and are subject to ethical and scientific debate. A transition toward a mechanism-based weight of evidence approach is considered a requirement to enhance the prediction of carcinogenic potential for chemicals. At RIVM, we are working on this alternative approach for cancer hazard assessment, which makes optimal use of innovative (computational) tools and be less animal demanding. For more information, click on the link in the video or read on here (https://doi.org/10.1080/10408444.2020.1841732) and here (https://doi.org/10.1080/10408444.2018.1458818). Contact the expert (https://nl.linkedin.com/in/mirjamluijten)
03:142 months ago
Helpathon #10 – Can you help Jolanda and Elza?
Meeting videos
HelpathonsEducation

Helpathon #10 – Can you help Jolanda and Elza?

Jolanda van der Velden, Chair of Physiology, and Elza van Deel, Educator, from Amsterdam University Medical Center want to support PhDs in preparing for the animal-free transition. They are both looking for an implementation strategy and course design. Do you have an interest in animal-free education and education about animal-free research? Read more and register here (https://www.helpathonhotel.org/coming-up).
00:553 months ago