TPI.tv: improving science through animal-free innovations and research

01:269 months ago
Introducing TPI.tv : a video platform by experts striving to improve science through animal-free innovations and research.

Related

A New Way to Evaluate Chemical Safety and Assess Risk
Various subjects
ToxicologyDataPolicy

A New Way to Evaluate Chemical Safety and Assess Risk

TOX21
06:292 years ago
Monique Janssens (personal account): Why we need the Transition towards Animal-free Innovations
Expert interviews
HelpathonsPolicy

Monique Janssens (personal account): Why we need the Transition towards Animal-free Innovations

Why is there a Transition towards Animal-free Innovations, while we have the 3Rs, including Replacement? Well, there is a difference. Animal experiments should no longer be the golden standard of reference. We should not ask: Is this animal-free method good enough to replace animal experiments? But: What is the research question, and how do I get the best answer, preferably without animals? I know that many researchers are doing this already. But we can do even more! It’s also about involving the full chain of parties, including patients, financers, legislators and companies. That is why the transition movement works with interdisciplinary networks and Helpathons. The transition helps to innovate, to accelerate and to implement. At the same time, there is no need to throw the 3Rs overboard. Actually, we owe applying them to the lab animals of today. But by innovating we can develop even more new practices in research and education that bring about better results for science in less time and often with less costs. Without using animals.
02:374 months ago
FirstbaseBIO - human brain organoids for studying neurological diseases
Innovation examples
HealthInnovationIn vitro

FirstbaseBIO - human brain organoids for studying neurological diseases

Human neurological diseases are still poorly understood, amongst others because animals are used as a model for the human brain. A way to overcome this problem is to mimic human brain functioning in a dish with organoids. FirstbaseBIO is developing off-the-shelf brain organoids on which neurological diseases can be studied. This 3D platform will be formed by reprogrammed human cells from easily accessible sources, for example urine, skin, or mucosa. The proof of-concept brain organoids will be those from patients who are suffering from adrenoleukodystrophy (ALD), a rare, incurable brain disease that occurs primarily in young boys and is often fatal. With the brain organoid platform, possible medicinal treatments for ALD can be effectively optimised. FirstbaseBIO was nominated for the Venture Challenge 2021 for their development of human brain organoids to study neurological diseases.
03:335 months ago
Avatar Zoo - teaching animal anatomy using virtual reality
Innovation examples
EducationInnovation

Avatar Zoo - teaching animal anatomy using virtual reality

Animals are essential to train the next generation of scientists understand diseases and develop treatments for humans as well as animals. Therefore, animals are used for educational purposes. Technologies such as Virtual Reality and Augmented Reality can be employed to reduce the number of animals in the future. Prof. Dr. Daniela Salvatori is working on the development of 'Avatar Zoo' together with UMCU and IT. Live animals are replaced by holographic 3D in this flexible platform. With these holograms one is able to study the anatomical, physiological and pathological systems and processes of all kinds of animals. Avatar Zoo won the Venture Challenge 2021 for the development of virtual reality models that can be used for anatomy classes and practical training.
02:405 months ago

New

Respiratory toxicity using in vitro methods
Innovation examples

Respiratory toxicity using in vitro methods

The airways form a barrier for inhaled compounds, however, such compounds may cause local effects in the airways or may lead to lung diseases, such as fibrosis or COPD. Cell models of the respiratory tract, cultured at the air-liquid-interface (ALI) are a relevant model to assess the effects of inhaled compounds on the airways. Such models allow human relevant exposure, which is via the air, and assessment of effects on the epithelial cell layer. At RIVM we use air-liquid-interface cultured cell models and expose these to airborne compounds to assess the effects of agents such as nanomaterials, air pollutants or compounds from cigarette smoke. By using a mechanism-based approach to assess the effects of these compounds we invest in animal-free alternatives that better predict adverse effects in humans.
02:2410 days ago
Setting up a PDXO platform of pancreatic cancer with spatial -omics characterization
Conferences abstracts

Setting up a PDXO platform of pancreatic cancer with spatial -omics characterization

Pancreatic ductal adenocarcinoma (PDAC) is known for its aggressive biology and lethality. Due to a low success rate of current diagnostic and therapeutic approaches in clinic, there is an urgent need for preclinical research studies to investigate the underlying biology of this malignancy. This knowledge is indispensable to facilitate the development and validation of potential new therapeutic compounds. Superior to conventional biomedical research models, the focus of this study is on the development and use of a well-established patient-derived 3D in vivo model, mimicking the tumor as it is present in a human body. The development and characterization of pancreatic cancer derived organoids. This model is extensively analysed using advanced histological methods omics technology to perform tumor subtyping. 15 established PDAC organoid lines and their corresponding parental tumors are validated using immunostainings and DNA hotspot sequencing. This study is the first to show in situ detection of important driver mutations of pancreatic cancer, like KrasG12D, both in parental tumor and organoids. Additionally, specific culture conditions are defined to develop subtype-specific organoids which are validated using multiplex RNA in situ hybridization and transcriptomics. We are proud to collaborate in a fruitful international project, aiming to set-up a pre-clinical screening platform for pancreatic cancer based on patient-derived organoids -and xenografts. Altogether, spatial-omics in depth analysis of both models will demonstrate (1) high resemblance to parental tissue and (2) subtype-specific signatures associated with type of model. Ultimately, the screening platform can be used by pharmaceutical companies to facilitate oncological drug testing in a subtype specific way. Publications Ilse Rooman's lab: https://pubmed.ncbi.nlm.nih.gov/34330784/ https://pubmed.ncbi.nlm.nih.gov/31161208/
03:2829 days ago
A Decision Support System to Investigate the Medical Management of Ventricular Assist Device Patients
Conferences abstracts

A Decision Support System to Investigate the Medical Management of Ventricular Assist Device Patients

Despite the positive outcomes of ventricular assist device (VAD) therapy, there are still some adverse events, such as suction, caused by the mismatch of the preload of the left ventricle and the flow of the pump. Ventricular suction can be due to multiple underlying pathophysiological conditions. However, the medical management of such patients is still not well defined. In order to analyse the potential of different therapeutic interventions to mitigate suction in different pathophysiological conditions, a suction module is embedded in a cardiovascular hybrid (hydraulic-computational) simulator. The suction module mimics the ventricular apex and its connection with a HeartWare HVAD system (Medtronic). With such a set-up, the medical management of different pathophysiological conditions can be evaluated, without the use of animals. Also watch the video on the cardiovascular simulator used for this research: https://tpi.tv/watch/76 Contact: https://www.linkedin.com/in/maria-rocchi-9aa7b4162/
02:4533 days ago
In vitro predictive models of particle-induced granulomas
Conferences abstracts

In vitro predictive models of particle-induced granulomas

Léa Hiéronimus is a PhD student at the Louvain centre for Toxicology and Applied Pharmacology (LTAP, UCLouvain, Belgium). Léa is working in François Huaux's team, where we are trying to better understand how certain inhaled particles exert their toxicity. The goal is to better diagnose and treat individuals exposed to particles, but also to identify the particle characteristics which induce, or do not induce, toxic effects. For this, Léa studies a very particular cell type which seems to be involved in particle responses. Indeed, we have found the specific accumulation of the innate subset of B-lymphocytes called “B-1 lymphocytes”, which occurred during granuloma formation/maturation induced by inhaled particles in mice. According to the literature, this accumulation can be attributed to their migration from mesothelial cavities such as the peritoneum, acting as a reservoir. In addition to conventional particles-induced granulomas, which formation rely on macrophages responses, we developed new models relying on B-1 lymphocytes. Indeed, B-1 lymphocytes show a unique clustering property, that is not observed using macrophages or other subsets of B-lymphocytes (conventional B-2 lymphocytes) as purified B-1 lymphocytes regroup granuloma-inducing particles (carbon nanotubes CNT7, crocidolite asbestos, micrometric silica MinUSil and MSS, cobalt oxide,…) but not carbon black, a particle not-inducing granuloma in vivo. Additionally, we developed a model aiming to recapitulate the lung after B-1 lymphocytes migration and found that macrophages and epithelial cells (MHS and LA4 cell lines) where grouped to form spheroids when in coculture with B-1 and not B-2 lymphocytes. These models will serve as tools to identify new mediators of granuloma formation, which could serve as biomarkers and/or therapeutic targets for exposed individuals. On the other hand, we aim to propose new bioassays for the prediction of granuloma-inducing materials using alternative models. Lab website: https://uclouvain.be/en/research-institutes/irec/ltap Contact: lea.hieronimus@uclouvain.be
03:1135 days ago