Experts

Transition beyond animal welfare
Expert interviews

Transition beyond animal welfare

This video explains what the programme TPI (Transition Programme for Innovation without the use of animals) is about.
02:3925 days ago
Stichting Proefdiervrij: Collaboration is key
Expert interviews
HealthInnovationPolicy

Stichting Proefdiervrij: Collaboration is key

At Stichting Proefdiervrij (the Dutch society for the replacement of animal testing) we believe that collaboration is essential for the development and implementation of animal-free models. In this video we introduce a few of the ways in which we, as an NGO, collaborate with researchers to reach our goal: the complete replacement of all test on animals
02:0745 days ago
Monique Janssens (personal account): Why we need the Transition towards Animal-free Innovations
Expert interviews
HelpathonsPolicy

Monique Janssens (personal account): Why we need the Transition towards Animal-free Innovations

Why is there a Transition towards Animal-free Innovations, while we have the 3Rs, including Replacement? Well, there is a difference. Animal experiments should no longer be the golden standard of reference. We should not ask: Is this animal-free method good enough to replace animal experiments? But: What is the research question, and how do I get the best answer, preferably without animals? I know that many researchers are doing this already. But we can do even more! It’s also about involving the full chain of parties, including patients, financers, legislators and companies. That is why the transition movement works with interdisciplinary networks and Helpathons. The transition helps to innovate, to accelerate and to implement. At the same time, there is no need to throw the 3Rs overboard. Actually, we owe applying them to the lab animals of today. But by innovating we can develop even more new practices in research and education that bring about better results for science in less time and often with less costs. Without using animals.
02:3714 months ago
Daniela Salvatori: TPI Utrecht
Expert interviews
HealthEducation

Daniela Salvatori: TPI Utrecht

Prof. dr. Daniela Salvatori, chair of TPI Utrecht, presents the aims of the local TPI group and invites all who want to share their ideas or questions on the transition towards animal-free innovations to get in touch via uu.nl/tpi.
02:2322 months ago

Innovation

New approaches for cancer hazard assessment
Innovation examples

New approaches for cancer hazard assessment

Chemical substances are subjected to assessment of genotoxic and carcinogenic effects before being marketed to protect man and the environment from health risks. For cancer hazard assessment, the long-term rodent carcinogenicity study is the current mainstay for the detection of nongenotoxic carcinogens. However, carcinogenicity studies are shown to have prominent weaknesses and are subject to ethical and scientific debate. A transition toward a mechanism-based weight of evidence approach is considered a requirement to enhance the prediction of carcinogenic potential for chemicals. At RIVM, we are working on this alternative approach for cancer hazard assessment, which makes optimal use of innovative (computational) tools and be less animal demanding. For more information, click on the link in the video or read on here (https://doi.org/10.1080/10408444.2020.1841732) and here (https://doi.org/10.1080/10408444.2018.1458818). Contact the expert (https://nl.linkedin.com/in/mirjamluijten)
03:142 months ago
Zebrafish in toxicity testing
Innovation examples

Zebrafish in toxicity testing

Zebrafish are increasingly recognised as a useful model for toxicity testing of chemical substances. Testing strategies are becoming more based on mechanisms of toxicity structured in adverse outcome pathways describing the chain of events leading to toxicity or disease. Using a battery of dedicated in vitro and in silico assays, insight can be gained in how exposure leads to disease. For certain diseases it is known that toxicity relies on the interaction between different organs and cell types, which requires research on whole organisms in addition to simple in vitro models. The zebrafish is considered a valuable whole organism model in a mechanism-based testing strategy. At RIVM, the zebrafish embryo model is used for testing the effect of chemical substances on several adverse outcomes and diseases. For more information see: https://ehp.niehs.nih.gov/doi/10.1289/EHP9888; https://doi.org/10.3390/ijerph18136717; www.linkedin.com/in/harm-heusinkveld
03:013 months ago
Animal-free computational modelling for prevention of human chemical-induced neural tube defects
Innovation examples

Animal-free computational modelling for prevention of human chemical-induced neural tube defects

Animal-free methods for human chemical safety assessment are promising tools for the reduction of animal testing. However, these methods only measure a small aspect of biology compared to an in vivo test. The reductionist nature of these methods thus limits their individual application in the regulatory arena of chemical risk assessment. Ontologies can be used to describe human biology, and delineate the basis of adverse outcome pathway networks that describe how chemical exposures may lead to adverse health effects. This pathway description can then help to select animal-free in vitro and in silico methods, comprehensively covering the network. The comprehensiveness of this approach, firmly rooted in human biology, is expected to facilitate regulatory acceptance of animal-free methods. As an example, this video zooms in on the development of a computational model for neural tube development, an aspect of human development that is especially vulnerable to chemical disruption. This research is part of the ONTOX project (https://www.ontox-project.eu). For more information on the concept of the Virtual Human, click here (https://doi.org/10.1016/j.cotox.2019.03.009.).
03:054 months ago
Developmental neurotoxicity testing using stem cells
Innovation examples

Developmental neurotoxicity testing using stem cells

Children should grow up in a safe and healthy environment. Disruption of brain development may have enormous impact on future life and might result in disorders such as ADHD or cognitive decline. The effect of compound exposure on the developing brain is largely unknown, since in the current regulatory test procedures in experimental animals effects on the brain are rarely investigated and human relevance of these animal models is under debate. Researchers at RIVM are developing a cell model based on human stem cells that mimics a small part of the developing brain. This method is human-relevant, animal-free, and based on mechanistic knowledge of human biology and physiology of brain development. The model can be an important component in a testing strategy to test the safety of chemicals and pharmaceuticals on the developing brain.
02:275 months ago

Meetings

Debate about animal testing
Meeting videos
HealthInnovationPolicy

Debate about animal testing

Animal testing contributes to advances in medicine and science in general. But in recent years people have increasingly questioned research using laboratory animals. The European Union and the Dutch government want to be a forerunner in the development and use of innovations that do not involve animal testing, but how do we want to achieve that? What are the challenges and opportunities for biomedical sciences? How do we accelerate the transition towards animal-free innovation? And what does this mean for research into better treatments for animals? In this debate Dutch leaders in the field of animal(-free) testing share their thoughts and opinions.
01:2746 days ago
Helpathon #4 - can you help Frank?
Meeting videos
HelpathonsHealth

Helpathon #4 - can you help Frank?

Can you help Frank with integrating an immune system into a macaque lung organoid to address local immunity to tuberculosis with his vaccination strategy? Join Helpathon #4, look at www.tpihelpathon.nl/coming-up ! Frank Verreck does research on tuberculosis at the Biomedical Primate Research Center (BPRC). Tuberculosis is the most deadly infectious disease worldwide! For the past hundred years, BCG (Bacillus Calmette Guérin) vaccinations take place through the skin. Research shows that macaques can be better protected from this infection by vaccination through their lungs. Frank really wants to further study the potential of this alternative vaccination strategy. He wants to understand how this BCG vaccination works in macaques lungs.
01:212 years ago
Helpathon #4 - can you help Raissa?
Meeting videos
HelpathonsIn vitro

Helpathon #4 - can you help Raissa?

Can you help Raissa find a more complex organoid-like brain and immune model based on rhesus microglia to study aging in relation to neuroinflammation and neurodegenerative diseases? Join Helpathon #4, look at www.tpihelpathon.nl/coming-up ! Raissa Timmerman is a PhD student at the alternative unit at the Biomedical Primate Research Center. A better understanding of aging of the brain is key to studying neuroinflammation and neurodegenerative diseases. We believe there is a potential for breakthrough in using our existing live macaque data obtained from past aging experiments to develop more complex in vitro rhesus brain-like models and then to correlate all this data with data from human in vitro models and human live data.
01:322 years ago
Helpathon #4 - can you help Anne-Marie?
Meeting videos
HelpathonsIn vitro

Helpathon #4 - can you help Anne-Marie?

Can you help Anne-Marie develop a more organ-like Rhesus 3D liver model in which she can study the dormancy and the waking up of malaria parasites? Join Helpathon #4, look at www.tpihelpathon.nl/coming-up ! Anne- Marie Zeeman is a researcher at the Biomedical Primate Research Center (BPRC). Anne-Marie studies recurrent malaria ( P. vivax). She successfully developed a single cell layer in vitro model to study compounds affecting dormant and active malaria parasites in the liver of Rhesus monkeys. We believe that the cross correlation between in vitro Rhesus and in vitro human models will provide the missing link required to improve the drug development process and aid transition. A more refined Rhesus in vitro model can reduce the number of monkeys currently used for testing drugs. The data from in vivo monkeys combined with new in vitro models could help validate and develop reliable human in vitro models making testing on monkeys unnecessary detours.
01:382 years ago

Projects and initiatives

The Beyond Animal Testing Index
Projects and initiatives

The Beyond Animal Testing Index

The Beyond Animal Testing Index (BATI) was designed after the Access to Medicine Index with the aim to be a transparent, objective and independent benchmark that provide public research organisations and their stakeholders insight in what efforts and contributions they make in the transition to animal free innovation and to provide organisations incentive to learn from and inspire each other with regard to the implementation of research practices without the use of animals for the benefit of science.
02:0011 days ago
SCREENED
Projects and initiatives

SCREENED

The European collaborative project SCREENED aims to develop three-dimensional (3D) cell-based in vitro tests to better characterize the effects of endocrine disruptors (EDs) on thyroid gland function. This method will overcome the limitations of existing tests, being more sensitive at low doses of exposure to chemicals, and enabling the prediction of their toxicity on human health in a sex-specific manner. The ambition of the SCREENED project is that these new 3D in vitro tests, as well as the increased knowledge about adverse reactions after exposure to EDs, will be used for regulatory purposes, ultimately to improve human health.
02:2125 days ago
PrecisionTox
Projects and initiatives

PrecisionTox

In order to better protect human health and the environment from harmful chemicals, the European chemical agency (ECHA) pursues the objective of "zero tolerance" on non-compliance of chemical registration applications. In this video, scientists of the PrecisionTox project - an EU-funded project aiming to accelerate chemical safety assessment with 3Rs compliant models - explain how New Approach Methods (NAMs) provide rich biological data that can help close the data gap to increase acceptance of chemicals dossier while reducing, replacing and refining animal experimentation.
02:092 months ago
Transition Project towards Animal-free Innovations
Projects and initiatives

Transition Project towards Animal-free Innovations

Animal-free innovations are emerging at a fast pace. TPI Chair Daniela Salvatori, and TPI ambassadors Jeffrey Beekman and Elly Hol, explain why animal-free innovations are important and how TPI supports researchers in finding or developing animal-free methods for their research. They call for collaboration.
02:156 months ago

Conferences

Scientific solutions for the gap in translational medicine: skin model platform with melanoma (3D melanoma)
Conferences abstracts

Scientific solutions for the gap in translational medicine: skin model platform with melanoma (3D melanoma)

The developing process of a new drug, from first testing to regulatory approval and ultimately to market is a long, costly, and risky path. Noteworthy is the fact that almost 95% of the drugs that go into human trials fail. According to the National Institutes of Health (NIH), 80 to 90% of drug research projects fail before they ever get tested in humans. The value of preclinical research, mainly conducted in animal model experiments for predicting the effectiveness of therapies and treatment strategies in human trials, has remained controversial. Only 6% of the animal studies are successfully translated into the human response. Breaking down failure rates by therapeutic area, oncology disorders account for 30% of all failures. The absence of human-relevant models with receptors, proteins, and drug interactions in the in situ microenvironment leaves a gap in the scientific discovery process of new therapies. In this context, the present work presents the development of a sophisticated in vitro skin model platform focus on boosting melanoma treatment. The results showed a physiological microenvironment of human skin with epidermal differentiation and development of stratified layers (basement membrane, stratum spinosum, stratum granulosum, and stratum corneum). Furthermore, it was observed the pathophysiological microenvironment of the melanoma with invasion or migration through the basement membrane into the dermis and no epidermal differentiation. Vemurafenib treatment, the gold standard which targets BRAF mutations, showed a decrease in proliferation and invasion of melanoma tumors, with an increase in epidermis keratinization. Melanoma incidence continues to increase year-on-year and is currently responsible for >80% of skin cancer deaths. It is the most common cutaneous form and is known to have the highest mutational load of all cancers. Nowadays, patients with advanced melanoma BRAFV600E mutation can benefit from monotherapies or targeted therapies. Although the initial response rate is effective, disease progression and tumor chemoresistance rapidly occur in the majority of patients. Therefore, the treatment of melanoma remains a challenge, and despite the advances, there is still an urgent need to identify new therapeutic strategies. 3D Model Melanoma is considered one important tool for studying the evolution of the pathology, as well as evaluating the effectiveness of new therapeutic approaches.
03:198 months ago
Optimizing CAR-T-cell therapy using 3D tumor models and real-time cell imaging
Conferences abstracts

Optimizing CAR-T-cell therapy using 3D tumor models and real-time cell imaging

Chimeric antigen receptor (CAR) T-cell therapy accounts for one of the most promising therapeutic advances in cancer immunotherapy. In this form of adoptive cell transfer, T-cells of a patient are engineered to express so-called ‘CARs’, in which the antigen-recognition capacity of antibodies is combined with T-cell activating domains. So far, CAR-T-cell therapy obtained its most impressive results in hematological malignancies resulting in the approval of five CAR-T cell products by the FDA for hematologic indications. However, CAR-T-cell therapy has not mirrored its success in solid tumors. The poor efficacy of CAR-T-cell therapy in solid tumors has, in part, been attributed to the lack of understanding in how CAR-T-cells function in a solid tumor microenvironment. Classical validation methods rely on the use of specificity and functionality assays in 2D models against adherent target cells or target cells in suspension. Yet, by using these models, observations made in vitro may differ greatly to an in vivo situation where tumors are engrafted in 3D structures. We developed a more relevant and translational 3D tumor model using eGFP+ target cells. This allows us to couple 3D tumor cell killing by CAR-T-cells to live-cell imaging, providing an efficient quantification of target cell death. As proof- of-concept, we used a 3D model of eGFP+ glioblastoma cells and CAR-T-cells targeting a pan-cancer antigen. This 3D glioblastoma model allowed us to show that classical scFv-based CAR-T-cell therapy of glioblastoma cells can be improved by nanoCAR-T-cells. Furthermore, combining nanoCAR-T-cell therapy with a genetic approach of nanobody-based anti-PD-L1 immune checkpoint blockade further increased the cytotoxicity of the nanoCAR-T-cell therapy.
03:258 months ago
Biotransformation of two proteratogenic anti-epileptics in the zebrafish (Danio rerio) embryo
Conferences abstracts

Biotransformation of two proteratogenic anti-epileptics in the zebrafish (Danio rerio) embryo

The zebrafish (Danio rerio) embryo has gained interest as an alternative model for developmental toxicity testing, which still mainly relies on in vivo mammalian models (e.g., rat, rabbit). However, cytochrome P450 (CYP)-mediated drug metabolism, which is critical for the bioactivation of several proteratogens, is still under debate for this model. Therefore, we investigated the potential capacity of zebrafish embryos/larvae to bioactivate two known mammalian proteratogens, carbamazepine (CBZ) and phenytoin (PHE) into their mammalian active metabolites, carbamazepine-10,11-epoxide (E-CBZ) and 5-(4-hydroxyphenyl)-5-phenylhydantoin (HPPH), respectively. Zebrafish embryos were exposed to three concentrations (31.25, 85, and 250 μM) of CBZ and PHE from 51⁄4 to 120 hours post fertilization (hpf) at 28.5°C under a 14/10 hour light/dark cycle. For species comparison, also adult zebrafish, rat, rabbit and human liver microsomes (200 μg/ml) were exposed to 100 μM of CBZ or PHE for 240 minutes at 28.5°C. Potential formation of the mammalian metabolites was assessed in the embryo medium (48, 96, and 120 hpf); pooled (n=20) whole embryos/larvae extracts (24 and 120 hpf); and in the microsomal reaction mixtures (at 5 and 240 minutes) by targeted investigation using a UPLC–Triple Quadrupole MS system with lamotrigine (0.39 μM) as internal standard. Our study showed that zebrafish embryos metabolize CBZ to E-CBZ, but only at the end of organogenesis (from 96 hpf onwards), and no biotransformation of PHE to HPPH occurred. In contrast, our in vitro drug metabolism assay showed that adult zebrafish metabolize both compounds into their active mammalian metabolites. However, significant differences in metabolic rate were observed among the investigated species. These results highlight the importance of including the zebrafish in the in vitro drug metabolism testing battery for accurate species selection in toxicity studies.
02:578 months ago
Lung tumor spheroids for onco-immunological research
Conferences abstracts

Lung tumor spheroids for onco-immunological research

Lung cancer thrives in a complex multicellular tumor microenvironment that impacts tumor growth, metastasis, response, and resistance to therapy. While orthotopic murine lung cancer models can partly recapitulate this complexity, they do not resonate with high-throughput immunotherapeutic drug screening assays. To address the current need for relevant and easy-to-use lung tumor models, we established a protocol for fully histo-compatible murine and human lung tumor spheroids, generated by co-culturing lung fibroblasts with tumor cells in ultra-low adherence 96-well plates. Moreover, we describe their application potential to study tumor-stroma organization, T-cell motility, and infiltration as well as distinct macrophage subsets’ behavior using confocal microscopy. Finally, we report on a 3D target specific T-cell killing assay that allows spatio-temporal assessment using live cell imaging and flow cytometry. This lung tumor spheroid platform can serve as a blueprint for other solid cancer types to comply with the need for straightforward onco-immunology assays.
03:098 months ago