Monique Janssens (personal account): Why we need the Transition towards Animal-free Innovations

02:3718 months ago

Why is there a Transition towards Animal-free Innovations, while we have the 3Rs, including Replacement? Well, there is a difference. Animal experiments should no longer be the golden standard of reference. We should not ask: Is this animal-free method good enough to replace animal experiments? But: What is the research question, and how do I get the best answer, preferably without animals? I know that many researchers are doing this already. But we can do even more! It’s also about involving the full chain of parties, including patients, financers, legislators and companies. That is why the transition movement works with interdisciplinary networks and Helpathons. The transition helps to innovate, to accelerate and to implement. At the same time, there is no need to throw the 3Rs overboard. Actually, we owe applying them to the lab animals of today. But by innovating we can develop even more new practices in research and education that bring about better results for science in less time and often with less costs. Without using animals.

Related

Tumor-on-chips to study delivery of protein therapeutics
Innovation examples
HealthInnovationIn vitro

Tumor-on-chips to study delivery of protein therapeutics

Valentina is a PhD candidate at the Department of Biochemistry at Radboudumc. Her research focuses on developing and applying organ-on-chip technologies, such as tumor-on-a-chip systems, to study the tissue-specific and cytosolic delivery of protein therapeutics. Valentina's research has also aimed at bridging the gap between engineers and biologists, promoting the use of microfluidic organ-on-chip technologies to answer more relevant biological questions. One example of this is the development of a mathematical model that could be applied to study drug delivery and diffusion in a tumor-on-a-chip system and to extrapolate possible outcomes of the delivery of therapeutic proteins to tumors in the human body. Another collaboration led to the development of a tumor-on-a-chip where hypoxic conditions can be replicated and investigated, and where the targeting of specific hypoxia markers in tumor cells can be investigated.
00:473 months ago
Stem cell differentiation assays for animal-free developmental neurotoxicity assessment
Innovation examples
ToxicologyInnovationIn vitro

Stem cell differentiation assays for animal-free developmental neurotoxicity assessment

Victoria de Leeuw was a PhD candidate in the research group of prof. dr. Aldert Piersma at the RIVM and Institute for Risk Assessment Sciences at Utrecht University. Piersma's lab studies the effects of compounds on development of the embryo during pregnancy with, among other techniques, stem cell cultures. The project of Victoria was aimed to differentiate embryonic stem cells of mouse and human origin into neuronal and glial cells, which could mimic parts of differentiation as seen during embryonic brain development. These models were able to show some of the known toxic mechanisms induced by these compounds, congruent with what they we hypothesised to mimic. This provides mechanistic information into how chemical compounds can be toxic to brain development. Therefore, these two stem cell assays make a useful contribution to the animal-free assessment of developmental neurotoxicity potential of compounds. Victoria is nominated for the Hugo van Poelgeest prize 2022 for excellent research to replace animal testing.
00:433 months ago
Immortalized human cells to model atrial fibrillation in vitro
Innovation examples
HealthInnovationIn vitro

Immortalized human cells to model atrial fibrillation in vitro

Niels Harlaar is a PhD Candidate at the Laboratory of Experimental Cardiology at the Leiden University Medical Center. Here, under the supervison of prof. dr. D.A. Pijnappels and dr. A.A.F. de Vries, he focusses on the conditional immortalization of human atrial cardiomyocytes for (among many other applications) in vitro modelling of atrial fibrillation. He has successfully generated, characterized and applied this technique of these conditionally immortalized human atrial myocyte lines to model atrial fibrillation in vitro. Niels is nominated for the Hugo van Poelgeest prize 2022 for excellent research to replace animal testing. Click here (https://hartlongcentrum.nl/research/laboratory-of-experimental-cardiology/) for more information on the Laboratory of Experimental Cardiology.
00:403 months ago
Helpathon #7 - Can you help Jesmond and Duco?
Meeting videos

Helpathon #7 - Can you help Jesmond and Duco?

Can you help Jesmond Dalli, Professor at Barts, the London School of Medicine and Dentistry and Queen Mary University of London and Duco Koenis, Post-Doctoral Fellow in his team, to identify animal free research methods to discover novel drug targets for resolving inflammation in rheumatoid arthritis and bacterial infections? Join Helpathon #7 – first of its kind as it will take place in the UK, on 10-11th of October 2022.
01:423 months ago