A hybrid in silico-in vitro cardiorespiratory simulator for medical device testing

03:1115 months ago

Cardiovascular medical devices (CMDs) (e.g. artificial hearts, ventricular assist devices, ECMO, heart valves) support the cardiac and/or the respiratory function of patients. Large challenges are encountered when assessing CMDs interaction with the human body and the effects on the heart and vessels. Especially CMDs with new designs require an extensive evaluation concerning their effectiveness and safety under different pathophysiological conditions. We propose a high fidelity cardiorespiratory simulator for the testing of the hemodynamic performance of CMDs. The proposed simulator merges the flexibility of the in silico system with a hydraulic interface to test CMDs. As such, the simulator embeds a high fidelity cardiorespiratory model, allowing the reproduction of pathologies at both cardiac and respiratory level. The simulator works as a test bench for the assessment of CMDs, from prototype stage to pre-clinical stage. Thanks to its flexibility and high-fidelity, the simulator helps reducing animal testing and provides insights on how to improve CMD design to better suit different patient’s needs.

Contact: https://www.kuleuven.be/wieiswie/en/person/00098489 RE-place database: https://www.re-place.be/method/cardiovascular-modelling-medical-device-testing

Related

Tumor-on-chips to study delivery of protein therapeutics
Innovation examples
HealthInnovationIn vitro

Tumor-on-chips to study delivery of protein therapeutics

Valentina is a PhD candidate at the Department of Biochemistry at Radboudumc. Her research focuses on developing and applying organ-on-chip technologies, such as tumor-on-a-chip systems, to study the tissue-specific and cytosolic delivery of protein therapeutics. Valentina's research has also aimed at bridging the gap between engineers and biologists, promoting the use of microfluidic organ-on-chip technologies to answer more relevant biological questions. One example of this is the development of a mathematical model that could be applied to study drug delivery and diffusion in a tumor-on-a-chip system and to extrapolate possible outcomes of the delivery of therapeutic proteins to tumors in the human body. Another collaboration led to the development of a tumor-on-a-chip where hypoxic conditions can be replicated and investigated, and where the targeting of specific hypoxia markers in tumor cells can be investigated.
00:473 months ago
Stem cell differentiation assays for animal-free developmental neurotoxicity assessment
Innovation examples
ToxicologyInnovationIn vitro

Stem cell differentiation assays for animal-free developmental neurotoxicity assessment

Victoria de Leeuw was a PhD candidate in the research group of prof. dr. Aldert Piersma at the RIVM and Institute for Risk Assessment Sciences at Utrecht University. Piersma's lab studies the effects of compounds on development of the embryo during pregnancy with, among other techniques, stem cell cultures. The project of Victoria was aimed to differentiate embryonic stem cells of mouse and human origin into neuronal and glial cells, which could mimic parts of differentiation as seen during embryonic brain development. These models were able to show some of the known toxic mechanisms induced by these compounds, congruent with what they we hypothesised to mimic. This provides mechanistic information into how chemical compounds can be toxic to brain development. Therefore, these two stem cell assays make a useful contribution to the animal-free assessment of developmental neurotoxicity potential of compounds. Victoria is nominated for the Hugo van Poelgeest prize 2022 for excellent research to replace animal testing.
00:433 months ago
Immortalized human cells to model atrial fibrillation in vitro
Innovation examples
HealthInnovationIn vitro

Immortalized human cells to model atrial fibrillation in vitro

Niels Harlaar is a PhD Candidate at the Laboratory of Experimental Cardiology at the Leiden University Medical Center. Here, under the supervison of prof. dr. D.A. Pijnappels and dr. A.A.F. de Vries, he focusses on the conditional immortalization of human atrial cardiomyocytes for (among many other applications) in vitro modelling of atrial fibrillation. He has successfully generated, characterized and applied this technique of these conditionally immortalized human atrial myocyte lines to model atrial fibrillation in vitro. Niels is nominated for the Hugo van Poelgeest prize 2022 for excellent research to replace animal testing. Click here (https://hartlongcentrum.nl/research/laboratory-of-experimental-cardiology/) for more information on the Laboratory of Experimental Cardiology.
00:403 months ago
Helpathon #7 - Can you help Jesmond and Duco?
Meeting videos

Helpathon #7 - Can you help Jesmond and Duco?

Can you help Jesmond Dalli, Professor at Barts, the London School of Medicine and Dentistry and Queen Mary University of London and Duco Koenis, Post-Doctoral Fellow in his team, to identify animal free research methods to discover novel drug targets for resolving inflammation in rheumatoid arthritis and bacterial infections? Join Helpathon #7 – first of its kind as it will take place in the UK, on 10-11th of October 2022.
01:423 months ago